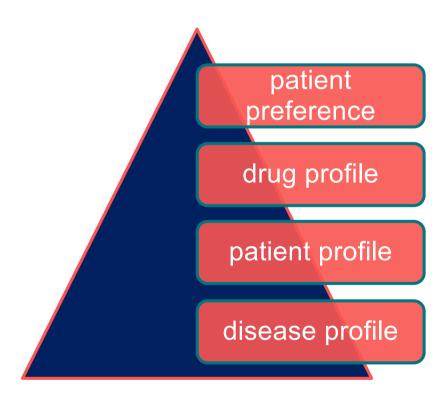


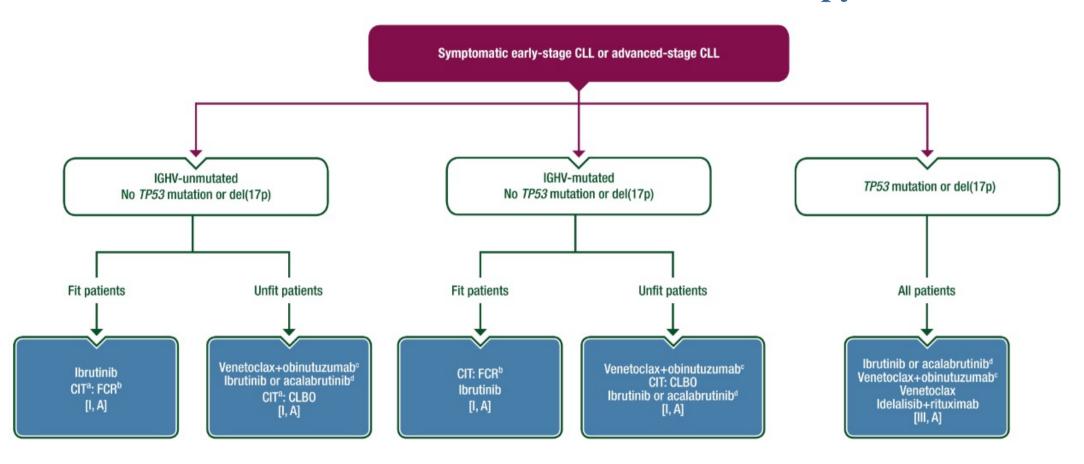
Impatto clinico terapeutico: LLC

Paolo Ghia - Milano

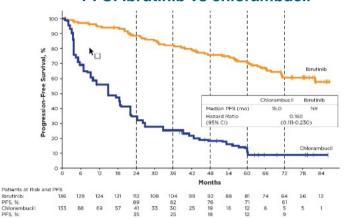
PADOVA

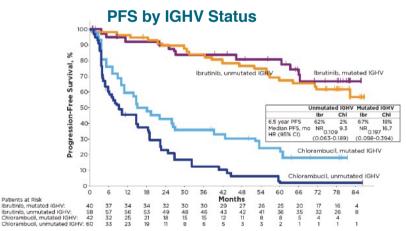

21 Marzo 2022 Hotel NH Mantegna

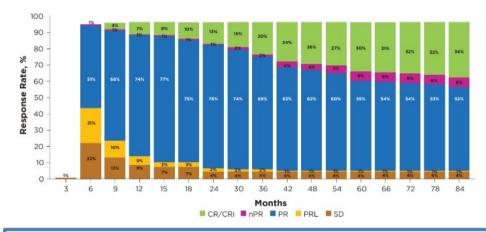
Disclosures of PAOLO GHIA


Company name	Research support	Employee	Consultant	Stockholder	Speakers fees	Advisory board	Other
AstraZeneca	x		х		х	х	
AbbVie	x		x		x	x	
ArQule/MSD			x			x	
BeiGene			x		x	x	
CelGene/Juno/BMS			x			x	
Janssen	x		x		х	x	
Lilly/Loxo			x		x	x	
Sanofi			x			x	
Roche			x			x	

Personalized management in CLL


ESMO Clinical Practice: frontline therapy

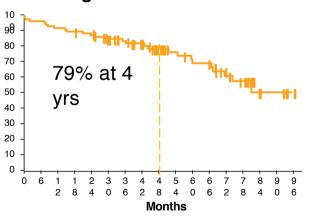


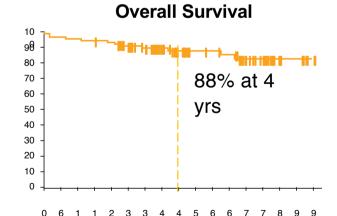

Ph3 RESONATE-2 with up to 7 years of follow-up: 1L ibrutinib

PFS: Ibrutinib vs chlorambucil

Response increase over time: CR/CRi 34%

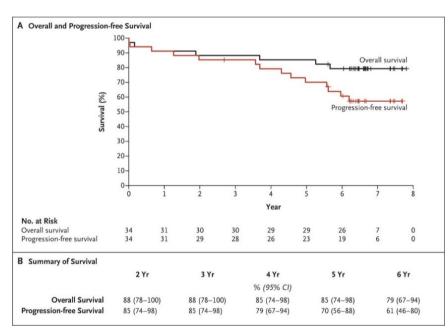
- Longest follow-up of any Ph3 1L studies of targeted agents
- 61% of patients are alive and progression-free at 6.5 years. 6.5-year OS: 78%.
- Ibr benefit similar in pts with mIGHV and uIGHV, and response including CR/CRi continued to deepen over time.
- Only 16 (12%) pts progressed while receiving ibr.
- Close to 50% of pts remain on therapy; dose adjustments effectively managed most AEs

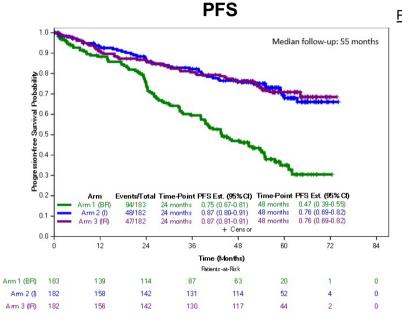



Efficacy of First-Line Ibrutinib for CLL With TP53 Aberrations

Pooled analysis: 4-year follow-up

	PCYC-1122e (NIH study)	RESONATE-2	ILLUMINATE	ECOG1912
N	34	11	18	26
Regimen	lbr	lbr	lbr + Obinu	lbr + Ritux
Patients	del(17p)/ <i>TP53</i> mut	<i>TP53</i> mut	del(17p)/ <i>TP53</i> mut	<i>TP53</i> mut

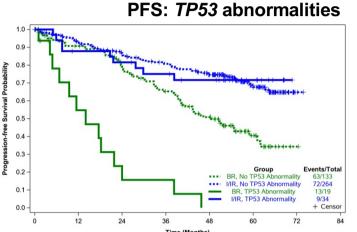

Progression-free Survival



2 Months 0 6

Phase 2 NIH study

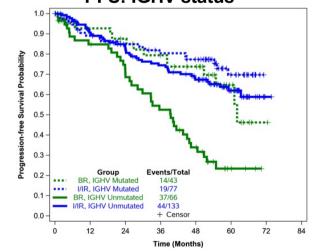
Alliance A041202: long term results* show continued advantage of ibrutinib-based regimens vs bendamustine + rituximab



<u>I vs BR:</u> Hazard Ratio 0.36 95% CI: 0.26-0.52 P <0.0001

IR vs BR: Hazard Ratio 0.36 95% CI: 0.25-0.51 P <0.0001

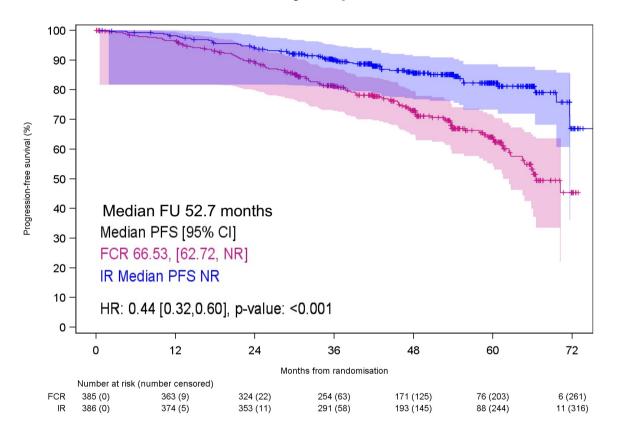
IR vs I: Hazard Ratio 0.99 95% CI: 0.66-1.48 P = 0.96


Treatment Effect I/IR vs BR

No TP53 Abn Hazard Ratio 0.39 95% CI: 0.27-0.55

<u>TP53 Abn</u> Hazard Ratio 0.07 95% CI: 0.03-0.18

Interaction P = 0.0006


PFS: IGHV status

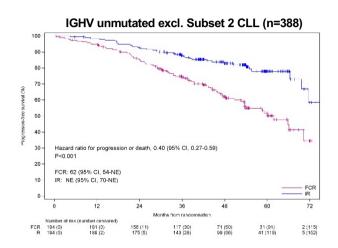
Third planned interim analysis of Arms 2 and 3 vs Arm 1; second planned interim analysis of Arm 3 vs Arm 2 Median follow-up = 55 months

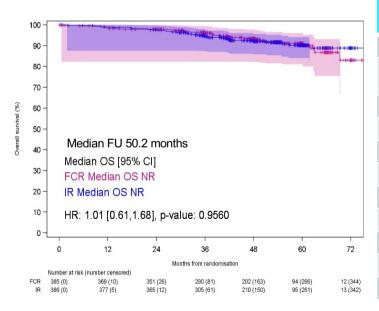
Phase III NCRI FLAIR Trial: Ibrutinib plus rituximab vs FCR

Primary endpoint: PFS

IWCLL Response 3-months post-treatment with FCR/R

	FCR (n=385)	IR (n=386)
CR	233 (60.5%)	81 (21.0%)
PR	106 (27.6%)	271 (70.2%)
SD/PD/NR	46 (11.9%)	34 (8.8%)

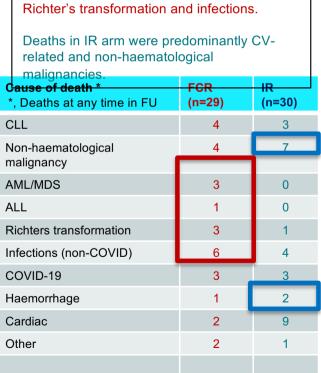

Proportion of participants with MRD negativity* in the bone marrow at 3-months post-treatment with FCR/R

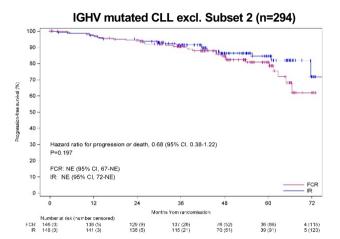

	FCR (n=385)	IR (n=386)	
MRD Negative	213 (55.3%)	15 (3.9%)	
MRD Positive	140 (36.4%)	357 (92.5%)	*
N/A	32 (8.3%)	14 (3.6%)	(

*, MRD flow cytometry <1 CLL cell/10,000 (IWCLL criteria)

A greater percentage of participants in the FCR arm became MRD negative in the bone marrow 3-months post-treatment compared to the IR arm (55.3% vs 3.9%)

Phase III NCRI FLAIR Trial: Ibrutinib plus rituximab vs FCR



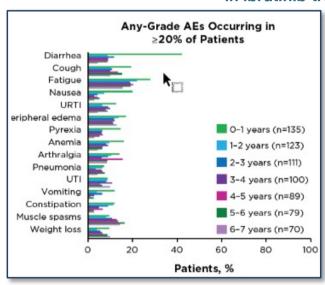

PFS by IGHV mutation status

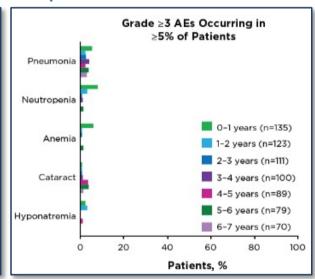
Stereotype Subset 2: n=46 (FCR 20; IR 26) → HR for PD or death 0.32 (95% CI, 0.06-1.76), p=0.191

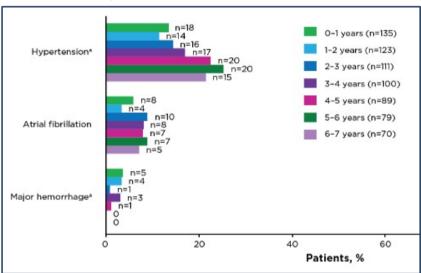
Deaths in FCR arm were predominantly

secondary haematological malignancies,

Treatment after progression


	FCR (n=56)	IR (n=19)			
Therapy for Richter's transf	Therapy for Richter's transformation or Hodgkin's				
CHOP-R (5) or ABVD (1)	4	2			
Therapy for relapsed CLL					
BTKi	38	0			
Idelalisib + R	1	1			
Venetoclax + R	8	5			
CIT (FCR/BR/ChIR)	4	10			
Rituximab	1	1			
Targeted therapy for CLL	47/52 (90%)	6/17 (35%)			

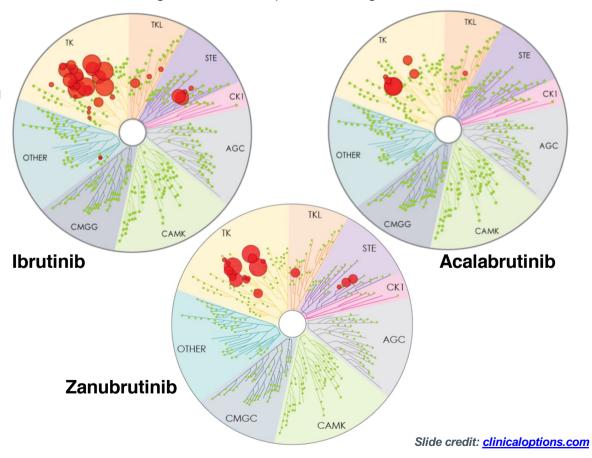

Hillmen et al., ASH 2021; abstract 642


RESONATE-2: AEs with Up to 7 Years of Follow-up

Prevalence of most frequent AEs over time in ibrutinib-treated patients

AEs of clinical interest over time in patients treated with ibrutinib

- 66/79 patients (84%) had an AE that had a complete resolution following a dose hold of at least 7 days
- 31 patients (23%) experienced AEs leading to dose reductions.
 - AEs occurring in >1 patient were thrombocytopenia (n=3), and anemia, arthralgia, diarrhea, fatigue, and palpitations (n=2, each).
- At current follow-up (up to 7 years), 31 patients (23%) experienced AEs as the primary cause of ibrutinib discontinuation.
 - AEs occurring in >1 patient were atrial fibrillation (n=5), pneumonia (n=3), and palpitations (n=2).

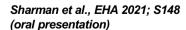

Kinase Selectivity of BTK Inhibitors

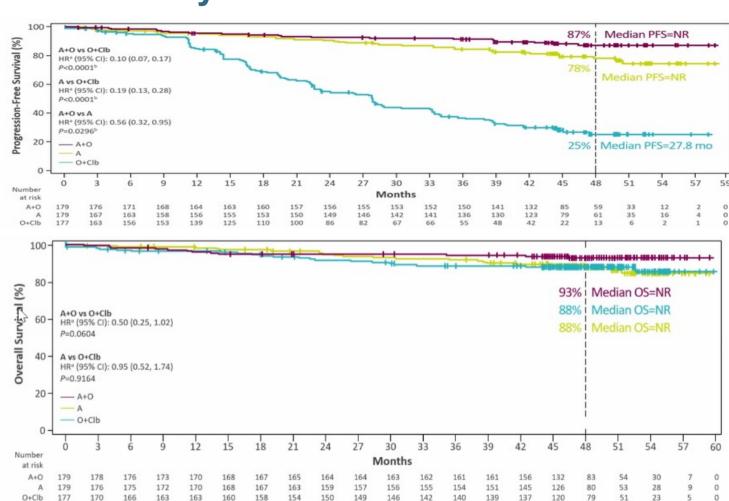
Kinase Selectivity Profiling at 1 μmol/L (in vitro)

Larger red circles represent stronger inhibition

IC ₅₀ /	'EC ₅₀	(nM)
--------------------	-------------------	------

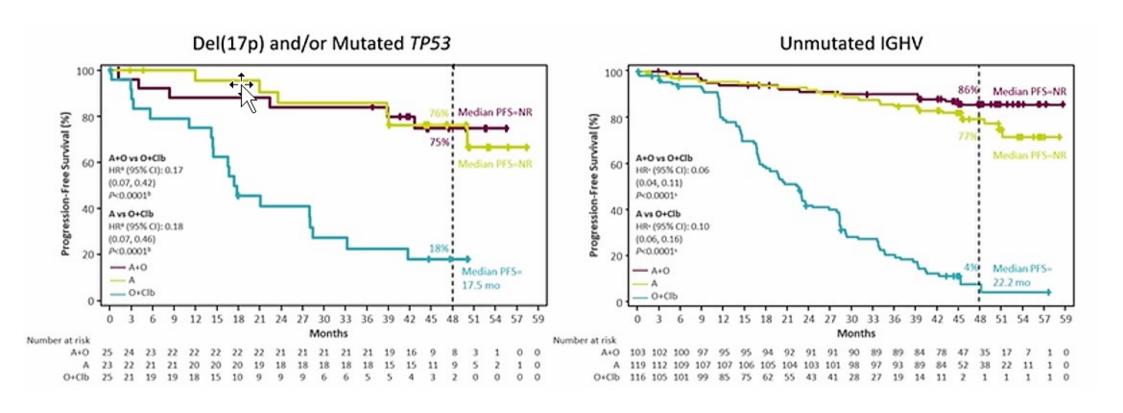
Kinase	Ibrutinib	Acalabrutinib	Zanubrutinib
ВТК	1.5	5.1	0.5
TEC	10	126	44
ITK	4.9	>1000	50
BMX	0.8	46	1.4
EGFR	5.3	>1000	21
ERBB4	3.4	16	6.9
JAK3	32	>1000	1377
BLK	0.1	>1000	2.5



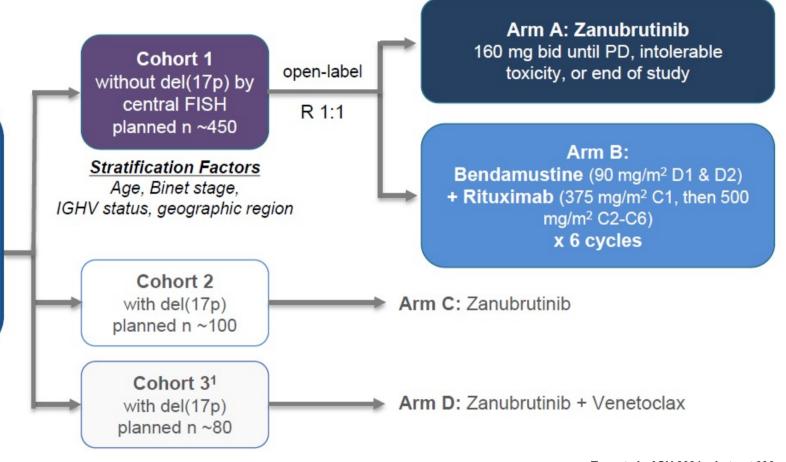

Sharman et al., EHA 2021; S148 (oral presentation)

Phase 3 ELEVATE TN Study: acalabrutinib ± obinutuzumab

Investigator assessed PFS


Overall Survival

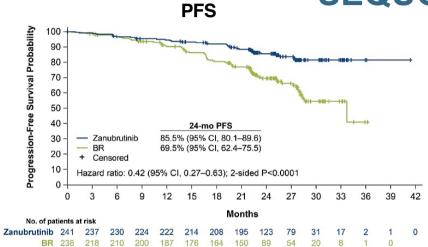
ELEVATE TN: PFS according to TP53 and IGHV status

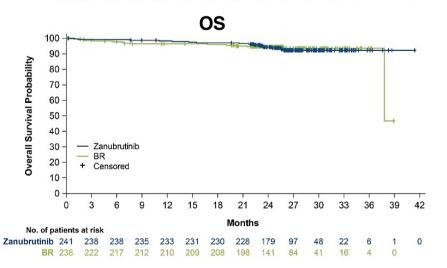

SEQUOIA (BGB-3111-304): Zanubrutinib vs BR in TN CLL

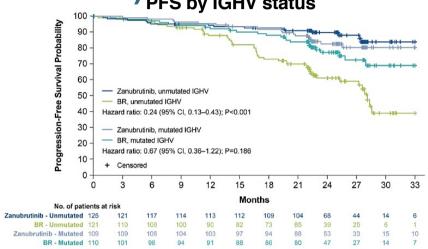
Study Design

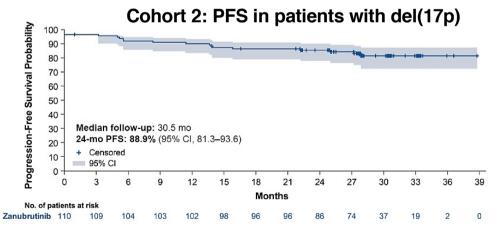
Key Eligibility Criteria

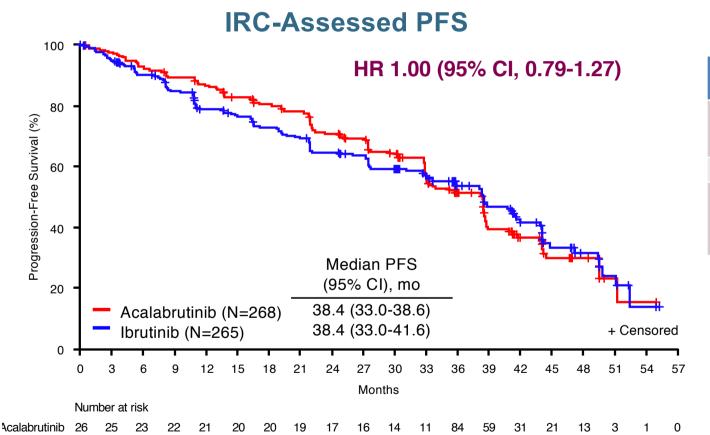
- Untreated CLL/SLL
- Met iwCLL criteria for treatment
- ≥65 y of age OR unsuitable for treatment with FCR^a
- Anticoagulation and CYP3A inhibitors allowed


ClinicalTrials.gov: NCT03336333




Tam et al., ASH 2021; abstract 396





Tam et al., ASH 2021; abstract 396

Phase 3 ELEVATE RR study: Ibrutinib vs acalabrutinib

Median follow-up 41 months

	Acalabrutinib (N=268)	Ibrutinib (N=265)
Events, n (%) Death PD	143 (53.4) 22 (8.2) 121 (45.1)	136 (51.3) 28 (10.6) 108 (40.8)
Censored, n (%)	125 (46.6)	129 (48.7)
PFS (95% CI), % 12 months 24 months 36 months	86.7 (81.8-90.3) 70.9 (64.8-76.1) 51.4 (44.7-57.8)	78.8 (73.1-83.4) 64.5 (58.1-70.2) 53.8 (47.0-60.1)

Noninferiority achieved if the upper bound of the 95% CI of HR is less than the prespecified NI margin of 1.429

251

Phase 3 ELEVATE RR study: Ibrutinib vs acalabrutinib

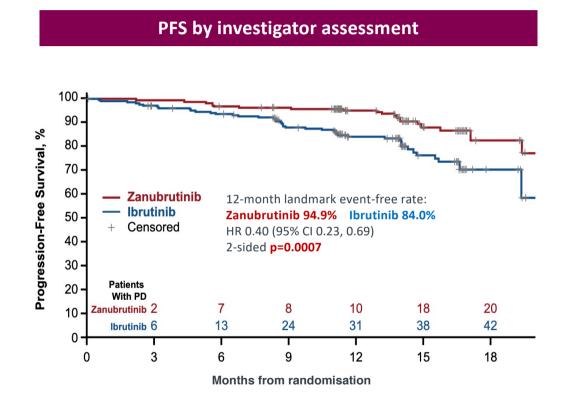
	Any o	grade	Grad	e ≥3
Events, n (%)	Acalabrutinib (n=266)	Ibrutinib (n=263)	Acalabrutinib (n=266)	Ibrutinib (n=263)
Diarrhea ^{a,b}	92 (34.6)	121 (46.0)	3 (1.1)	13 (4.9)
Headache ^{a,b}	92 (34.6)	53 (20.2)	4 (1.5)	0
Cougha	77 (28.9)	56 (21.3)	2 (0.8)	1 (0.4)
URTI	71 (26.7)	65 (24.7)	5 (1.9)	1 (0.4)
Neutropenia	56 (21.1)	65 (24.7)	52 (19.5)	60 (22.8)
Pyrexia	62 (23.3)	50 (19.0)	8 (3.0)	2 (0.8)
Arthralgia ^a	42 (15.8)	60 (22.8)	0	2 (0.8)
Hypertension ^{a,b}	23 (8.6)	60 (22.8)	11 (4.1)	23 (8.7)
Anemia	58 (21.8)	49 (18.6)	31 (11.7)	34 (12.9)
Fatigue ^b	54 (20.3)	44 (16.7)	9 (3.4)	0
Nausea	47 (17.7)	49 (18.6)	0	1 (0.4)
dary Contusion ^a	31 (11.7)	48 (18.3)	0	1 (0.4)
int Pneumonia	47 (17.7)	43 (16.3)	28 (10.5)	23 (8.7)
Atrial fibrillationa	24 (9.0)	41 (15.6)	12 (4.5)	9 (3.4)
Thrombocytopenia	40 (15.0)	35 (13.3)	26 (9.8)	18 (6.8)

Higher incidence in **bold red** for terms with statistical differences.

Among most common AEs above, grade 5 were reported in 5 (1.9%) acalabrutinib patients (pyrexia, n=1; pneumonia, n=4) and 4 (1.5%) ibrutinib patients (URTI, n=1; pneumonia, n=3).

^aBased on Barnard's exact test, two-sided P-value <0.05 without multiplicity adjustment for any grade events.

^bBased on Barnard's exact test, two-sided P-value <0.05 without multiplicity adjustment for grade ≥3 events.


Includes AEs reported at ≥15% incidence (any grade) in either arm.

AE, adverse event; URTI, upper respiratory tract infection.

Phase 3 ALPINE study: Ibrutinib vs zanubrutinib in RR CLL

ORR by investigator assessment			
	Zanubrutinib (n=207), n (%)	lbrutinib (n=208), n (%)	
Primary endpoint: ORR (PR+CR)	162 (78.3) 95% CI: 72.0, 83.7 Superiority 2-sided		
CR/CRi	with pre-specified 4 (1.9)	3 (1.4)	
nPR	1 (0.5)	0	
ORR (PR- L+PR+CR)	183 (88.4)	169 (81.3)	
PR-L	21 (10.1)	39 (18.8)	
SD	17 (8.2)	28 (13.5)	
PD	1 (0.5)	2 (1.0)	
Discontinued or new therapy prior to 1 st assessment	6 (2.9)	9 (4.3)	
	del(17p) (n=24), n (%)	del(17p) (n=26), n (%)	
ORR (PR+CR)	20 (83.3)	14 (53.8)	

CR, complete response; CRi, CR with incomplete bone marrow recovery; nPR, nodular partial response; ORR, overall response rate; PD, progressive disease; PFS, progression-free survival; PR, partial response; PR-L, partial response with lymphocytosis; SD, stable disease

Phase 3 ALPINE study: AEs of Special Interest

Safety Analysis Population	Zanubrutinib (n=204), n (%)		Ibrutinib (n=207), n (%)	
	Any Grade	Grade ≥3	Any Grade	Grade ≥3
Cardiac disorders ^a	28 (13.7)	5 (2.5)	52 (25.1)	14 (6.8)
Atrial fibrillation and flutter (key 2° endpoint)	5 (2.5)	2 (1.0)	21 (10.1)	4 (1.9)
Hemorrhage Major hemorrhage ^b	73 (35.8) 6 (2.9)	6 (2.9) 6 (2.9)	75 (36.2) 8 (3.9)	6 (2.9) 6 (2.9)
Hypertension	34 (16.7)	22 (10.8)	34 (16.4)	22 (10.6)
Infections	122 (59.8)	26 (12.7)	131 (63.3)	37 (17.9)
Neutropeniac	58 (28.4)	38 (18.6)	45 (21.7)	31 (15.0)
Thrombocytopeniac	19 (9.3)	7 (3.4)	26 (12.6)	7 (3.4)
Secondary primary malignancies Skin cancers AE, adverse events. All events are of any grade unless others	17 (8.3) 7 (3.4)	10 (4.9) 3 (1.5)	13 (6.3) 10 (4.8)	4 (1.9) 2 (1.0)

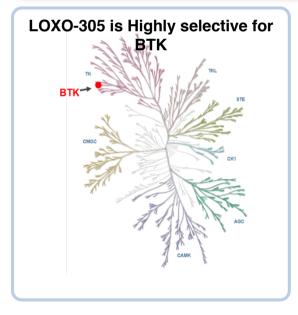
^a Cardiac disorders leading to treatment discontinuation: zanubrutinib 0 patients and ibrutinib 7 (3.4%) patients.

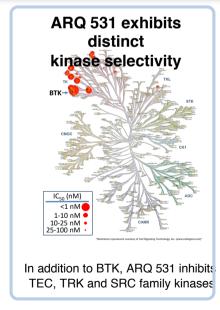
blncludes hemorrhages that were serious or grade ≥3 or CNS hemorrhages of all grades.

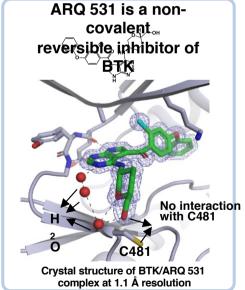
[°] Pooled terms including neutropenia, neutrophil count decreased, and febrile neutropenia; thrombocytopenia and platelet count decreased.

A glimpse into the future

Third generation of BTK-inhibitors

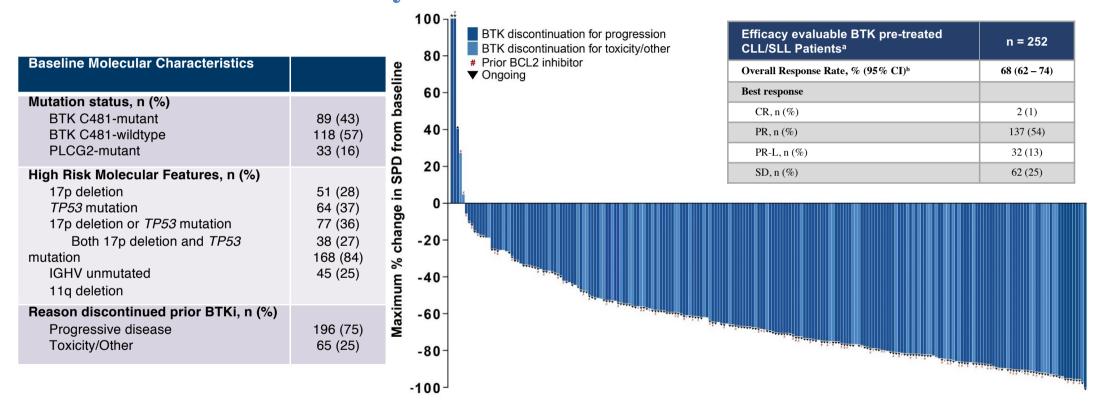

Relapsed/Refractory CLL

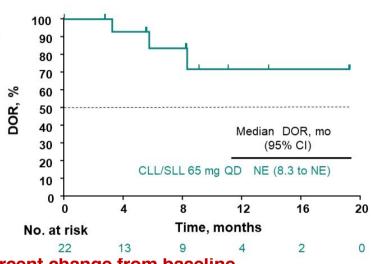

Third generation BTK inhibitors

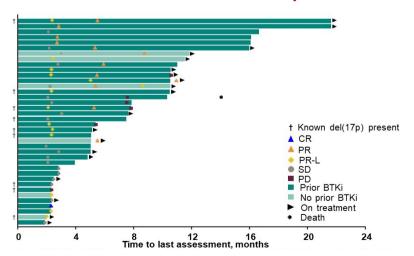

LOXO-305 Pirtobrutinib MK-1026 (ARQ531) Nemtabrutinib

- They bind REVERSIBLY to BTK

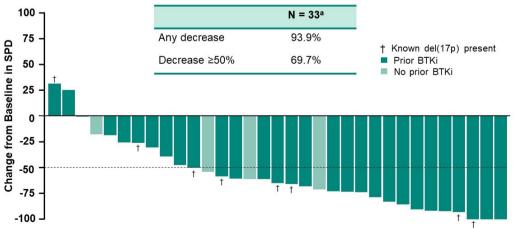
- They are **DUAL INHIBITORS** of both wild type and C481S mutated BTK



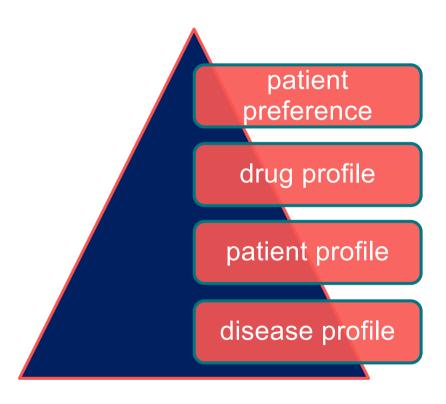

Phase 1/2 BRUIN study: Pirtobrutinib in RR CLL


Efficacy was independent of BTK C481 mutation status, the reason for prior BTK discontinuation or other classes of prior therapy received

Characteristic, n (%)	CLL/SLL 65 mg QD N = 51
Prior lines, median (range)	4 (1-18)
Prior BTK inhibitor therapy	43 (84.3)
ECOG PS 0	14 (27.5)
1	32 (62.7)
2	5 (9.8)
IGHV Unmutated	30 (58.8)
Mutated	2 (3.9)
Unknown	19 (37.3)
Del (17p) Present	12 (23.5)
Absent	33 (64.7)
Missing	6 (11.8)
BTK C481S Present	32 (62.7)
Absent	12 (23.5)
Unknown/Missing	7 (13.7)


n (%) [95% CI]	CLL/SLL 65 mg QD N = 38 ^a
ORR	22 (57.9%)
	[40.8-73.6]
CR	1 (2.6%) [0.0-13.8]
PR	12 (31.6%) [17.5-48.6]
PR-L	9 (23.7%) [11.4-40.2]
SD	15 (39.5%) [24.0-5.6]

Treatment duration response


Percent change from baseline

Woyach et al., ASH 2021; abstract 392

Personalized management in CLL

Division of Experimental Oncology

Padova, 21 Marzo 2022 Hotel NH Mantegna

Alessandro Campanella, Daniela Belloni, Silvia Bonfiglio, Jessica Bordini, Michela Frenquelli, Francesca Gandini, Silvia Heltai, Chiara Lenzi, Eleonora Perotta, Athanasios Pseftogkas, Pamela Ranghetti, Lydia Scarfò

Strategic Research Program on CLL

Elisa Albi, Antonella Capasso, Maria Colia, Eloise Scarano, Lydia Scarfò, Luana Schiattone, Virginia Sgarlato

CERTH, Thessaloniki

Anna Vardi, Thomas Chatzikonstantinou, Stavroula Ntoufa, Aliki Xochelli, Anastasia Hadzidimitrious, Andreas Agathangelidis, Katerina Gemenetzi, Christina Karamanidou, Maria Gounari, Kostas Stamatopoulos

Karolinska Institut, Stockholm

Lesley Ann Sutton, Panayotis Baliakas, Viktor Ljungstrom, Richard Rosenquist

